Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(25): e2302459, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381655

RESUMO

The emergence and rapid spread of methicillin-resistant Staphylococcus aureus (MRSA) raise a critical need for alternative therapeutic options. New antibacterial drugs and targets are required to combat MRSA-associated infections. Based on this study, celastrol, a natural product from the roots of Tripterygium wilfordii Hook. f., effectively combats MRSA in vitro and in vivo. Multi-omics analysis suggests that the molecular mechanism of action of celastrol may be related to Δ1 -pyrroline-5-carboxylate dehydrogenase (P5CDH). By comparing the properties of wild-type and rocA-deficient MRSA strains, it is demonstrated that P5CDH, the second enzyme of the proline catabolism pathway, is a tentative new target for antibacterial agents. Using molecular docking, bio-layer interferometry, and enzyme activity assays, it is confirmed that celastrol can affect the function of P5CDH. Furthermore, it is found through site-directed protein mutagenesis that the Lys205 and Glu208 residues are key for celastrol binding to P5CDH. Finally, mechanistic studies show that celastrol induces oxidative stress and inhibits DNA synthesis by binding to P5CDH. The findings of this study indicate that celastrol is a promising lead compound and validate P5CDH as a potential target for the development of novel drugs against MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , 1-Pirrolina-5-Carboxilato Desidrogenase/química , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Simulação de Acoplamento Molecular
2.
Elife ; 112022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35470798

RESUMO

The influence of genetic variation on the aging process, including the incidence and severity of age-related diseases, is complex. Here, we define the evolutionarily conserved mitochondrial enzyme ALH-6/ALDH4A1 as a predictive biomarker for age-related changes in muscle health by combining Caenorhabditis elegans genetics and a gene-wide association scanning (GeneWAS) from older human participants of the US Health and Retirement Study (HRS). In a screen for mutations that activate oxidative stress responses, specifically in the muscle of C. elegans, we identified 96 independent genetic mutants harboring loss-of-function alleles of alh-6, exclusively. Each of these genetic mutations mapped to the ALH-6 polypeptide and led to the age-dependent loss of muscle health. Intriguingly, genetic variants in ALDH4A1 show associations with age-related muscle-related function in humans. Taken together, our work uncovers mitochondrial alh-6/ALDH4A1 as a critical component to impact normal muscle aging across species and a predictive biomarker for muscle health over the lifespan.


Ageing is inevitable, but what makes one person 'age well' and another decline more quickly remains largely unknown. While many aspects of ageing are clearly linked to genetics, the specific genes involved often remain unidentified. Sarcopenia is an age-related condition affecting the muscles. It involves a gradual loss of muscle mass that becomes faster with age, and is associated with loss of mobility, decreased quality of life, and increased risk of death. Around half of all people aged 80 and over suffer from sarcopenia. Several lifestyle factors, especially poor diet and lack of exercise, are associated with the condition, but genetics is also involved: the condition accelerates more quickly in some people than others, and even fit, physically active individuals can be affected. To study the genetics of conditions like sarcopenia, researchers often use animals like flies or worms, which have short generation times but share genetic similarities with humans. For example, the worm Caenorhabditis elegans has equivalents of several human muscle genes, including the gene alh-6. In worms, alh-6 is important for maintaining energy supply to the muscles, and mutating it not only leads to muscle damage but also to premature ageing. Given this insight, Villa, Stuhr, Yen et al. wanted to determine if variation in the human version of alh-6, ALDH4A1, also contributes to individual differences in muscle ageing and decline in humans. Evaluating variation in this gene required a large amount of genetic data from older adults. These were taken from a continuous study that follows >35,000 older adults. Importantly, the study collects not only information on gene sequences but also measures of muscle health and performance over time for each individual. Analysis of these genetic data revealed specific small variations in the DNA of ALDH4A1, all of which associated with reduced muscle health. Follow-up experiments in worms used genetic engineering techniques to test how variation in the worm alh-6 gene could influence age-related health. The resulting mutant worms developed muscle problems much earlier than their normal counterparts, supporting the role of alh-6/ALDH4A1 in determining muscle health across the lifespan of both worms and humans. These results have identified a key influencer of muscle health during ageing in worms, and emphasize the importance of validating effects of genetic variation among humans during this process. Villa, Stuhr, Yen et al. hope that this study will help researchers find more genetic 'markers' of muscle health, and ultimately allow us to predict an individual's risk of sarcopenia based on their genetic make-up.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase , Caenorhabditis elegans , Longevidade , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , Envelhecimento/genética , Animais , Biomarcadores , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Humanos , Longevidade/genética , Músculos , Mutação
3.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768932

RESUMO

In ovarian cancer, therapy resistance mechanisms complicate cancer cell eradication. Targeting Musashi RNA-binding proteins (MSI) may increase therapeutic efficacy. Database analyses were performed to identify gene expression associations between MSI proteins and key therapy resistance and cancer stem cell (CSC) genes. Then, ovarian cancer cells were subjected to siRNA-based dual knockdown of MSI-1 and MSI-2. CSC and cell cycle gene expression was investigated using quantitative polymerase chain reaction (qPCR), western blots, and flow cytometry. Metabolic activity and chemoresistance were assessed by MTT assay. Clonogenic assays were used to quantify cell survival post-irradiation. Database analyses demonstrated positive associations between MSI proteins and putative CSC markers NOTCH, MYC, and ALDH4A1 and negative associations with NOTCH inhibitor NUMB. MSI-2 expression was negatively associated with the apoptosis regulator p21. MSI-1 and MSI-2 were positively correlated, informing subsequent dual knockdown experiments. After MSI silencing, CSC genes were downregulated, while cell cycle progression was reduced. Metabolic activity was decreased in some cancer cells. Both chemo- and radioresistance were reduced after dual knockdown, suggesting therapeutic potential. Dual knockdown of MSI proteins is a promising venue to impede tumor growth and sensitize ovarian cancer cells to irradiation and chemotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteínas do Tecido Nervoso/genética , Neoplasias Ovarianas/terapia , Proteínas de Ligação a RNA/genética , Tolerância a Radiação/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , Apoptose/genética , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ovário/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Notch/genética
4.
Metab Brain Dis ; 36(6): 1413-1417, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34037900

RESUMO

Hyperprolinemia type II (HPII) is a rare autosomal recessive disorder of proline degradation pathway due to deficiency of delta-1-pyrroline-5-carboxylate dehydrogenase. Pathogenic variants in the ALDH4A1 gene are responsible for this disorder. We here describe an 11-month-old infant with recurrent seizures refractory to multiple antiepileptic drugs. She was hospitalized in view of acute-onset encephalopathy, exacerbation of generalized seizures following an upper respiratory infection. Laboratory investigation revealed significantly elevated proline levels in dried blood spots. DNA sample of the child was subjected to a targeted next-generation sequencing gene panel for hyperprolinemias. We detected a novel nonsense homozygous variant in the ALDH4A1 gene in the child and the heterozygous variant of the same in both the parents. Based on the location of the variant i.e. in the last exon, truncated protein is expected to be expressed by skipping nonsense-mediated decay and such point-nonsense variants could be an ideal target for readthrough drugs to correct genetic defects.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/deficiência , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Epilepsia/genética , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Encéfalo/diagnóstico por imagem , Códon sem Sentido , DNA/genética , Epilepsia Resistente a Medicamentos/genética , Eletroencefalografia , Epilepsia/etiologia , Feminino , Variação Genética , Humanos , Lactente , Imageamento por Ressonância Magnética , Prolina/sangue , Prolina/genética
5.
Elife ; 92020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022684

RESUMO

Exposure to environmental stress is clinically established to influence male reproductive health, but the impact of normal cellular metabolism on sperm quality is less well-defined. Here we show that impaired mitochondrial proline catabolism, reduces energy-storing flavin adenine dinucleotide (FAD) levels, alters mitochondrial dynamics toward fusion, and leads to age-related loss of sperm quality (size and activity), which diminishes competitive fitness of the animal. Loss of the 1-pyrroline-5-carboxylate dehydrogenase enzyme alh-6 that catalyzes the second step in mitochondrial proline catabolism leads to premature male reproductive senescence. Reducing the expression of the proline catabolism enzyme alh-6 or FAD biosynthesis pathway genes in the germline is sufficient to recapitulate the sperm-related phenotypes observed in alh-6 loss-of-function mutants. These sperm-specific defects are suppressed by feeding diets that restore FAD levels. Our results define a cell autonomous role for mitochondrial proline catabolism and FAD homeostasis on sperm function and specify strategies to pharmacologically reverse these defects.


Assuntos
Caenorhabditis elegans/fisiologia , Flavina-Adenina Dinucleotídeo/metabolismo , Espermatozoides/fisiologia , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , Animais , Caenorhabditis elegans/metabolismo , Masculino , Mitocôndrias/enzimologia , Dinâmica Mitocondrial , Reprodução , Espermatozoides/metabolismo
6.
BMC Neurol ; 19(1): 345, 2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31884946

RESUMO

BACKGROUND: Hyperprolinemia type 2 (HPII) is a rare autosomal recessive disorder of the proline metabolism, that affects the ALDH4A1 gene. So far only four different pathogenic mutations are known. The manifestation is mostly in neonatal age, in early infancy or early childhood. CASE PRESENTATION: The 64-years female patient had a long history of abdominal pain, and episode of an acute neuritis. Ten years later she was admitted into the neurological intensive-care-unit with acute abdominal pain, multiple generalized epileptic seizures, a vertical gaze palsy accompanied by extensive lactic acidosis in serum 26.0 mmol/l (reference: 0.55-2.2 mmol/l) and CSF 12.01 mmol/l (reference: 1.12-2.47 mmol/l). Due to repeated epileptic seizures and secondary complications a long-term sedation with a ventilation therapy over 20 days was administered. A diagnostic work-up revealed up to 400-times increased prolin-level in urine CSF and blood. Furthermore, a low vitamin-B6 serum value was found, consistent with a HPII causing secondary pyridoxine deficiency and seizures. The ALDH4A1 gene sequencing confirmed two previously unknown compound heterozygous variants (ALDH4A1 gene (NM_003748.3) Intron 1: c.62 + 1G > A - heterozygous and ALDH4A1 gene (NM_003748.3) Exon 5 c.349G > C, p.(Asp117His) - heterozygous). Under high-dose vitamin-B6 therapy no further seizures occurred. CONCLUSION: We describe two novel ALDH4A1-variants in an adult patient with hyperprolinemia type II causing secondary pyridoxine deficiency and seizures. Severe and potentially life-threatening course of this treatable disease emphasizes the importance of diagnostic vigilance and thorough laboratory work-up including gene analysis even in cases with atypical late manifestation.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , Acidose Láctica/etiologia , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Feminino , Humanos , Mutação , Estado Epiléptico/etiologia
7.
PLoS Genet ; 15(7): e1008292, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31339933

RESUMO

Red light promotes germination after activating phytochrome phyB, which destabilizes the germination repressor PIF1. Early upon seed imbibition, canopy light, unfavorable for photosynthesis, represses germination by stabilizing PIF1 after inactivating phyB. Paradoxically, later upon imbibition, canopy light stimulates germination after activating phytochrome phyA. phyA-mediated germination is poorly understood and, intriguingly, is inefficient, compared to phyB-mediated germination, raising the question of its physiological significance. A genetic screen identified polyamine uptake transporter 2 (put2) mutants that overaccumulate polyamines, a class of antioxidant polycations implicated in numerous cellular functions, which we found promote phyA-mediated germination. In WT seeds, our data suggest that canopy light represses polyamines accumulation through PIF1 while red light promotes polyamines accumulation. We show that canopy light also downregulates PIF1 levels, through phyA; however, PIF1 reaccumulates rapidly, which limits phyA-mediated germination. High polyamines levels in decaying seeds bypass PIF1 repression of germination and stimulate phyA-mediated germination, suggesting an adaptive mechanism promoting survival when viability is compromised.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/genética , Sistemas de Transporte de Aminoácidos/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fitocromo A/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação para Baixo , Germinação , Luz , Mutação , Poliaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Appl Microbiol Biotechnol ; 102(23): 10127-10137, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30229325

RESUMO

Poly gamma glutamic acid (γ-PGA) is an anionic polyamide with numerous applications. Previous studies revealed that L-proline metabolism is implicated in a wide range of cellular processes by increasing intercellular reactive oxygen species (ROS) generation. However, the relationship between L-proline metabolism and γ-PGA synthesis has not yet been analyzed. In this study, our results confirmed that deletion of Δ1-pyrroline-5-carboxylate dehydrogenase gene ycgN in Bacillus licheniformis WX-02 increased γ-PGA yield to 13.91 g L-1, 85.22% higher than that of the wild type (7.51 g L-1). However, deletion of proline dehydrogenase gene ycgM had no effect on γ-PGA synthesis. Furthermore, a 2.92-fold higher P5C content (19.24 µmol gDCW-1) was detected in the ycgN deficient strain WXΔycgN, while the P5C levels of WXΔycgM and the double mutant strain WXΔycgMN showed no difference, compared to WX-02. Moreover, the ROS level of WXΔycgN was increased by 1.18-fold, and addition of n-acetylcysteine (antioxidant) decreased its ROS level, which further reduced γ-PGA synthesis capability of WXΔycgN. Collectively, our results demonstrated that proline catabolism played an important role in maintaining ROS homeostasis, and deletion of ycgN-enhanced P5C accumulation, which induced a transient ROS signal to promote γ-PGA synthesis in B. licheniformis.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/genética , Bacillus licheniformis/genética , Proteínas de Bactérias/genética , Ácido Poliglutâmico/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Bacillus licheniformis/enzimologia , Proteínas de Bactérias/metabolismo , Citoplasma , Deleção de Genes , Ácido Poliglutâmico/biossíntese , Ácido Poliglutâmico/genética
9.
Arch Biochem Biophys ; 632: 142-157, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28712849

RESUMO

Proline has important roles in multiple biological processes such as cellular bioenergetics, cell growth, oxidative and osmotic stress response, protein folding and stability, and redox signaling. The proline catabolic pathway, which forms glutamate, enables organisms to utilize proline as a carbon, nitrogen, and energy source. FAD-dependent proline dehydrogenase (PRODH) and NAD+-dependent glutamate semialdehyde dehydrogenase (GSALDH) convert proline to glutamate in two sequential oxidative steps. Depletion of PRODH and GSALDH in humans leads to hyperprolinemia, which is associated with mental disorders such as schizophrenia. Also, some pathogens require proline catabolism for virulence. A unique aspect of proline catabolism is the multifunctional proline utilization A (PutA) enzyme found in Gram-negative bacteria. PutA is a large (>1000 residues) bifunctional enzyme that combines PRODH and GSALDH activities into one polypeptide chain. In addition, some PutAs function as a DNA-binding transcriptional repressor of proline utilization genes. This review describes several attributes of PutA that make it a remarkable flavoenzyme: (1) diversity of oligomeric state and quaternary structure; (2) substrate channeling and enzyme hysteresis; (3) DNA-binding activity and transcriptional repressor function; and (4) flavin redox dependent changes in subcellular location and function in response to proline (functional switching).


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/química , Proteínas de Bactérias/química , Flavoproteínas/química , Bactérias Gram-Negativas/enzimologia , Proteínas de Membrana/química , Prolina Oxidase/química , 1-Pirrolina-5-Carboxilato Desidrogenase/deficiência , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Prolina/química , Prolina/genética , Prolina/metabolismo , Prolina Oxidase/genética , Prolina Oxidase/metabolismo
10.
Plant Physiol Biochem ; 113: 133-140, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28213180

RESUMO

Global interest in sugarcane has increased significantly in recent years because of its economic impact on sustainable energy production. The purpose of the present study was to evaluate changes in the concentrations of total sugars, amino acids, free proline, and total proteins by colorimetric analyses and nuclear magnetic resonance (NMR) to perform a metabolic profiling of a water-soluble fraction of symplastic sap in response to the constitutive expression of a mutant Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia. However, there was not a significant increase in the free proline content in the sap of transgenic plants compared to the non-transformed control plants. The most noticeable difference between the two genotypes was an almost two-fold increase in the accumulation of sucrose in the stem internodes of P5CS transgenic sugarcane plants. The results presented in this work showed that transgenic sugarcane plants with increased levels of free proline accumulates high soluble sugar content and, therefore, may represent a novel genotype for improving sugarcane cultivars.


Assuntos
Prolina/biossíntese , Saccharum/genética , Saccharum/metabolismo , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Biomassa , Etanol/metabolismo , Genótipo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Prolina/metabolismo , Saccharum/enzimologia , Sacarose/metabolismo , Vigna/enzimologia , Vigna/genética , Água/química
11.
Pest Manag Sci ; 71(10): 1387-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25400271

RESUMO

BACKGROUND: Leptinotarsa decemlineata is an able disperser by flight. Novel control strategies must be explored to control the damage and inhibit the dispersal efficiently. Proline is a major energy substrate during flight. Δ-Pyrroline-5-carboxylate dehydrogenase (P5CDh) catalyses the second step of proline degradation for the production of ATP. RESULTS: A full-length Ldp5cdh cDNA was cloned. Ldp5cdh was ubiquitously expressed in the eggs, the first through fourth larval instars, wandering larvae, pupae and adults. In the adults, Ldp5cdh mRNA was widely distributed in thorax muscles, midgut, foregut, hindgut, Malpighian tubules, ventral ganglion, fat body and epidermis, with the expression levels from the highest to the lowest. Two double-stranded RNAs (dsRNAs) (dsLdp5cdh1 and dsLdp5cdh2) targeting Ldp5cdh were constructed and bacterially expressed. Ingestion of dsLdp5cdh1 and dsLdp5cdh2 successfully silenced Ldp5cdh, significantly increased the contents of proline, arginine and alanine, but strongly decreased the contents of asparate, asparagine, glutamate and glutamine in the haemolymph. Moreover, knocking down Ldp5cdh significantly reduced ATP content, decreased flight speed, shortened flight distance and increased adult mortality. CONCLUSIONS: It seems that identified Ldp5cdh encodes a functional P5CDh enzyme, and Ldp5cdh may serve as a potential target for dsRNA-based pesticide for controlling the damage and dispersal of L. decemlineata adults. © 2014 Society of Chemical Industry.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/genética , Besouros/enzimologia , Besouros/fisiologia , Proteínas de Insetos/genética , Interferência de RNA , Solanum tuberosum/parasitologia , 1-Pirrolina-5-Carboxilato Desidrogenase/química , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Sequência de Aminoácidos , Animais , Besouros/classificação , Besouros/genética , Feminino , Técnicas de Silenciamento de Genes , Controle de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/parasitologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Alinhamento de Sequência
12.
Can J Microbiol ; 60(11): 761-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25345824

RESUMO

A primary cDNA library of Penicillium oxalicum I1 was constructed using the switching mechanism at the 5' end of the RNA transcript (SMART) technique. A total of 106 clones showed halos in tricalcium phosphate (TCP) medium, and clone I-40 showed clear halos. The full-length cDNA of clone I-40 was 1355 bp with a complete open reading frame (ORF) of 1032 bp, encoding a protein of 343 amino acids. Multiple alignment analysis revealed a high degree of homology between the ORF of clone I-40 and delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDH) of other fungi. The ORF expression vector was constructed and transformed into Escherichia coli DH5α. The transformant (ORF-1) with the P5CDH gene secreted organic acid in medium with TCP as the sole source of phosphate. Acetic acid and α-ketoglutarate were secreted in 4 and 24 h, respectively. ORF-1 decreased the pH of the medium from 6.62 to 3.45 and released soluble phosphate at 0.172 mg·mL(-1) in 28 h. Expression of the P. oxalicum I1 p5cdh gene in E. coli could enhance organic acid secretion and phosphate-solubilizing ability.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Fosfatos de Cálcio/metabolismo , Clonagem Molecular , Escherichia coli/genética , Penicillium/enzimologia , Ácido Acético/metabolismo , Escherichia coli/metabolismo , Biblioteca Gênica , Vetores Genéticos , Ácidos Cetoglutáricos/metabolismo , Penicillium/genética , Proteínas Recombinantes/metabolismo , Solubilidade , Transformação Bacteriana
13.
PLoS One ; 8(9): e73483, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039956

RESUMO

Proline dehydrogenase (Prodh) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5Cdh) are two key enzymes in the cellular biogenesis of glutamate. Recombinant Prodh and P5Cdh proteins of the chestnut blight fungus Cryphonectria parasitica were investigated and showed activity in in vitro assays. Additionally, the C. parasitica Prodh and P5Cdh genes were able to complement the Saccharomyces cerevisiae put1 and put2 null mutants, respectively, to allow these proline auxotrophic yeast mutants to grow on media with proline as the sole source of nitrogen. Deletion of the Prodh gene in C. parasitica resulted in hypovirulence and a lower level of sporulation, whereas deletion of P5Cdh resulted in hypovirulence though no effect on sporulation; both Δprodh and Δp5cdh mutants were unable to grow on minimal medium with proline as the sole nitrogen source. In a wild-type strain, the intracellular level of proline and the activity of Prodh and P5Cdh increased after supplementation of exogenous proline, though the intracellular Δ(1)-pyrroline-5-carboxylate (P5C) content remained unchanged. Prodh and P5Cdh were both transcriptionally down-regulated in cells infected with hypovirus. The disruption of other genes with products involved in the conversion of arginine to ornithine, ornithine and glutamate to P5C, and P5C to proline in the cytosol did not appear to affect virulence; however, asexual sporulation was reduced in the Δpro1 and Δpro2 mutants. Taken together, our results showed that Prodh, P5Cdh and related mitochondrial functions are essential for virulence and that proline/glutamate pathway components may represent down-stream targets of hypovirus regulation in C. parasitica.


Assuntos
Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Eleocharis/parasitologia , Ácido Glutâmico/metabolismo , Pirróis/metabolismo , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Ascomicetos/genética , Ascomicetos/virologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Filogenia , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Virulência
14.
Am J Med Genet A ; 161A(8): 1915-22, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23825041

RESUMO

Succinic semialdehyde dehydrogenase (SSADH) deficiency is a disorder of the catabolism of the neurotransmitter gamma-aminobutyric acid (GABA) with a very variable clinical phenotype ranging from mild intellectual disability to severe neurological defects. We report here on a large Iranian family with four affected patients presenting with severe intellectual disability, developmental delay and generalized tonic-clonic seizures. Molecular genetic analysis revealed a missense mutation c.901A>G (p.K301E, RefSeq number NM_001080) in ALDH5A1 co-segregating with the disease in the family. The missense mutation affects an amino acid residue that is highly conserved across the animal kingdom. Protein modeling showed that p.K301E most likely leads to a loss of NAD(+) binding and a predicted decrease in the free energy by 6.67 kcal/mol furthermore suggests a severe destabilization of the protein. In line with these in silico observations, no SSADH enzyme activity could be detected in patient lymphoblasts.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Adulto , DNA/análise , DNA/genética , Deficiências do Desenvolvimento , Humanos , Irã (Geográfico) , Masculino , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Succinato-Semialdeído Desidrogenase/sangue , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genética , Adulto Jovem
15.
J Mol Biol ; 425(17): 3106-20, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23747974

RESUMO

The aldehyde dehydrogenase (ALDH) superfamily member Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyzes the NAD(+)-dependent oxidation of glutamate semialdehyde to glutamate, which is the final step of proline catabolism. Defects in P5CDH activity lead to the metabolic disorder type II hyperprolinemia, P5CDH is essential for virulence of the fungal pathogen Cryptococcus neoformans, and bacterial P5CDHs have been targeted for vaccine development. Although the enzyme oligomeric state is known to be important for ALDH function, the oligomerization of P5CDH has remained relatively unstudied. Here we determine the oligomeric states and quaternary structures of four bacterial P5CDHs using a combination of small-angle X-ray scattering, X-ray crystallography, and dynamic light scattering. The P5CDHs from Thermus thermophilus and Deinococcus radiodurans form trimer-of-dimers hexamers in solution, which is the first observation of a hexameric ALDH in solution. In contrast, two Bacillus P5CDHs form dimers in solution but do not assemble into a higher-order oligomer. Site-directed mutagenesis was used to identify a hexamerization hot spot that is centered on an arginine residue in the NAD(+)-binding domain. Mutation of this critical Arg residue to Ala in either of the hexameric enzymes prevents hexamer formation in solution. Paradoxically, the dimeric Arg-to-Ala T. thermophilus mutant enzyme packs as a hexamer in the crystal state, which illustrates the challenges associated with predicting the biological assembly in solution from crystal structures. The observation of different oligomeric states among P5CDHs suggests potential differences in cooperativity and protein-protein interactions.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/química , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Cristalografia por Raios X , Cinética , Mutagênese Sítio-Dirigida/métodos , Polimerização , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
16.
Genetics ; 194(2): 421-33, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23564202

RESUMO

Degradation of the multifunctional amino acid proline is associated with mitochondrial oxidative respiration. The two-step oxidation of proline is catalyzed by proline oxidase and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase, which produce P5C and glutamate, respectively. In animal and plant cells, impairment of P5C dehydrogenase activity results in P5C-proline cycling when exogenous proline is supplied via the actions of proline oxidase and P5C reductase (the enzyme that converts P5C to proline). This proline is oxidized by the proline oxidase-FAD complex that delivers electrons to the electron transport chain and to O2, leading to mitochondrial reactive oxygen species (ROS) overproduction. Coupled activity of proline oxidase and P5C dehydrogenase is therefore important for maintaining ROS homeostasis. In the genome of the fungal pathogen Cryptococcus neoformans, there are two paralogs (PUT1 and PUT5) that encode proline oxidases and a single ortholog (PUT2) that encodes P5C dehydrogenase. Transcription of all three catabolic genes is inducible by the presence of proline. However, through the creation of deletion mutants, only Put5 and Put2 were found to be required for proline utilization. The put2Δ mutant also generates excessive mitochondrial superoxide when exposed to proline. Intracellular accumulation of ROS is a critical feature of cell death; consistent with this fact, the put2Δ mutant exhibits a slight, general growth defect. Furthermore, Put2 is required for optimal production of the major cryptococcal virulence factors. During murine infection, the put2Δ mutant was discovered to be avirulent; this is the first report highlighting the importance of P5C dehydrogenase in enabling pathogenesis of a microorganism.


Assuntos
Cryptococcus neoformans/metabolismo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Animais , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/patogenicidade , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Homeostase , Camundongos , Camundongos Endogâmicos BALB C/microbiologia , Mutação , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Transcrição Gênica , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
17.
J Mol Biol ; 420(3): 176-89, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22516612

RESUMO

Type II hyperprolinemia is an autosomal recessive disorder caused by a deficiency in Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH; also known as ALDH4A1), the aldehyde dehydrogenase that catalyzes the oxidation of glutamate semialdehyde to glutamate. Here, we report the first structure of human P5CDH (HsP5CDH) and investigate the impact of the hyperprolinemia-associated mutation of Ser352 to Leu on the structure and catalytic properties of the enzyme. The 2. 5-Å-resolution crystal structure of HsP5CDH was determined using experimental phasing. Structures of the mutant enzymes S352A (2.4 Å) and S352L (2.85 Å) were determined to elucidate the structural consequences of altering Ser352. Structures of the 93% identical mouse P5CDH complexed with sulfate ion (1.3 Å resolution), glutamate (1.5 Å), and NAD(+) (1.5 Å) were determined to obtain high-resolution views of the active site. Together, the structures show that Ser352 occupies a hydrophilic pocket and is connected via water-mediated hydrogen bonds to catalytic Cys348. Mutation of Ser352 to Leu is shown to abolish catalytic activity and eliminate NAD(+) binding. Analysis of the S352A mutant shows that these functional defects are caused by the introduction of the nonpolar Leu352 side chain rather than the removal of the Ser352 hydroxyl. The S352L structure shows that the mutation induces a dramatic 8-Å rearrangement of the catalytic loop. Because of this conformational change, Ser349 is not positioned to interact with the aldehyde substrate, conserved Glu447 is no longer poised to bind NAD(+), and Cys348 faces the wrong direction for nucleophilic attack. These structural alterations render the enzyme inactive.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/química , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Alanina/química , Alanina/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Substituição de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Leucina/química , Leucina/genética , Camundongos , Mutação , NAD/metabolismo , Conformação Proteica , Dobramento de Proteína , Serina/química , Serina/genética
18.
Front Biosci (Landmark Ed) ; 17(1): 375-88, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201749

RESUMO

Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism.


Assuntos
Prolina/metabolismo , 1-Pirrolina-5-Carboxilato Desidrogenase/química , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Modelos Moleculares , Prolina Oxidase/química , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Especificidade por Substrato
19.
Front Biosci (Landmark Ed) ; 17(2): 556-68, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201760

RESUMO

Proline utilization A proteins (PutAs) are bifunctional enzymes that catalyze the oxidation of proline to glutamate using spatially separated proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase active sites. Here we use the crystal structure of the minimalist PutA from Bradyrhizobium japonicum (BjPutA) along with sequence analysis to identify unique structural features of PutAs. This analysis shows that PutAs have secondary structural elements and domains not found in the related monofunctional enzymes. Some of these extra features are predicted to be important for substrate channeling in BjPutA. Multiple sequence alignment analysis shows that some PutAs have a 17-residue conserved motif in the C-terminal 20-30 residues of the polypeptide chain. The BjPutA structure shows that this motif helps seal the internal substrate-channeling cavity from the bulk medium. Finally, it is shown that some PutAs have a 100-200 residue domain of unknown function in the C-terminus that is not found in minimalist PutAs. Remote homology detection suggests that this domain is homologous to the oligomerization beta-hairpin and Rossmann fold domain of BjPutA.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , 1-Pirrolina-5-Carboxilato Desidrogenase/química , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/enzimologia , Bradyrhizobium/genética , Domínio Catalítico , Sequência Conservada , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Prolina Oxidase/química , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
20.
Plant Physiol Biochem ; 49(10): 1147-54, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21831656

RESUMO

Proline accumulation is responsible for stress adaptation in many plants. To distinguish the involvement of two proline synthetic pathways, the virus induced gene silencing (VIGS) system that silenced the expression of genes encoding Δ(1)-pyrroline-5-carboxylate synthetase (P5CS; EC:1.5.1.12) and ornithine-δ-aminotransferase (OAT; EC 2.6.1.13) was performed, separately or concomitantly, in four-week-old Nicotiana benthamiana. Leaf discs of VIGS-treated tobacco were subjected to the treatment of drought, abscisic acid (ABA), or polyethylene glycol (PEG). The treated leaf discs were then collected for the determination of mRNA, chlorophyll, proline and polyamine level. Under drought stress or PEG treatment, most proline accumulation was inhibited in P5CS-silenced plants and only a small portion was inhibited in OAT-silenced plants under drought stress and no inhibition was observed under PEG treatment. Under ABA treatment, proline accumulation was inhibited completely in P5CS-silenced plants but unaffected in OAT-silenced plants. The degradation of chlorophyll was enhanced in P5CS-silenced plants but retarded in OAT-silenced plants under PEG treatment. Under ABA treatment, the degradation of chlorophyll was unaffected in both P5CS-silenced and OAT-silenced plants. The increase of polyamine level was unaffected in P5CS-silenced plants but increased in OAT-silenced plants under PEG treatment. Under ABA treatment, the increase of polyamine level was unaffected in P5CS-silenced plants but the polyamine level was increased later in OAT-silenced plants. Therefore, P5CS plays a major role in proline accumulation under drought, PEG, or ABA treatment, while OAT plays a minor role in drought or PEG treatment and does not participate in ABA treatment. OAT appears to have a close relationship with the regulation of polyamine levels in PEG and ABA treatments.


Assuntos
Inativação Gênica , Prolina/biossíntese , Estresse Fisiológico , 1-Pirrolina-5-Carboxilato Desidrogenase/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Ácido Abscísico/farmacologia , Vias Biossintéticas , Clorofila/metabolismo , Clonagem Molecular , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glutamato-5-Semialdeído Desidrogenase/genética , Glutamato-5-Semialdeído Desidrogenase/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Ornitina-Oxo-Ácido Transaminase/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/virologia , Poliaminas/metabolismo , Polietilenoglicóis/farmacologia , Prolina/genética , RNA Mensageiro/análise , /enzimologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...